$$ \begin{aligned}&\oint_{L}\boldsymbol{E}\cdot\mathrm{d}\boldsymbol{l}=-\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{t}}\int_{s}\boldsymbol{B}\cdot\mathrm{d}\boldsymbol{S} \\&\oint_{L}\boldsymbol{H}\cdot\mathrm{d}\boldsymbol{l}=I_f+\frac{\mathrm{d}}{\mathrm{d}t}\underset{\mathrm{s}}{\operatorname*{\int}}\boldsymbol{D}\cdot\mathrm{d}\boldsymbol{S} \\&\oint_{s}\boldsymbol{D}\cdot\mathrm{d}\boldsymbol{S}=Q_{t} \\&\oint_s\boldsymbol{B}\cdot\mathrm{d}\boldsymbol{S}=0\end{aligned} $$

$$ \begin{aligned} \oint_{\partial \Sigma}\bm E\cdot d\bm l&=-\iint_\Sigma \frac{\partial \bm B}{\partial t}\cdot d\bm \sigma\\

\oint_{\partial \Sigma}\bm H\cdot d\bm l&=\iint_\Sigma \left(\bm J+\frac{\partial \bm D}{\partial t}\right)\cdot d\bm \sigma\\

\oiint_\Sigma \bm D\cdot d\bm \sigma&=\iiint_\Omega \rho dV\\

\oiint_\Sigma \bm B\cdot d\bm \sigma &= 0 \end{aligned} $$