锥扩展 (epigraphical reformulation)
https://www.cvxgrp.org/scs/api/cones.html
| 凸锥类型 | 凸锥投影 | 凸锥 barrier | |
|---|---|---|---|
| 零锥 | |||
| 非负锥 | $\max (x,0)$ | ||
| 指数锥 | 3. 指数锥的投影问题 | ||
| 二次锥 SOC Second-Order Cone | $\{(t,\vec x)\in\R\times\R^k:|\vec x|_2\le t\iff \sum_i^kx_i^2\le t^2\}$ | ||
| 幂锥 | $\begin{aligned} K^{\alpha }{m,n}=\left\{ (x,z)\in \mathbb {R}^m+ \times \mathbb {R}^n, \left | \left | {z} \right |
| https://perso.uclouvain.be/francois.glineur/files/theses/Chares-PhD-thesis-2007.pdf | |||
| 投影算子的微分https://link.springer.com/article/10.1007/s00186-015-0514-0 | |||
| 半正定锥 Positive SemiDefinite cones - PSD | $\max (\lambda,0)$ | 投影算子的微分https://link.springer.com/article/10.1007/s11228-005-0005-1 | |
| PSD - Spectral Matrix Cone: | |||
| nuclear norm cone | in spectral space | ||
| $K_{l1}\equiv \left\{ | |||
| (t,\vec x)\in \R\times \R^n: | |||
| t\ge|\vec x|_1 | |||
| =\blue{ | |||
| \sum_i^n | x_i | } | |
| \right\}$ | |||
| for associated spectral matrix cone | |||
| $K_{nuc}\equiv \left\{ | |||
| (t,\mathbf X)\in \R\times | |||
| \orange{ | |||
| \R^{m\times n}}: | |||
| t\ge|\mathbf X|_*=\blue{ | |||
| \sum_i^n\sigma_i(\mathbf X)}, | |||
| m\ge n | |||
| \right\}$ where singular values are sorted | ad-hoc analysis. | ||
| https://arxiv.org/abs/2511.01089v1 | |||
| PSD - Spectral Matrix Cone: | |||
| sum-of-largest-eigenvalues cone | in spectral space | ||
| $K_{\text{vSum}} \triangleq \{ (t, x) \in \reals \times \reals^n \: | \: \sum_{i=1}^k x_{[i]} \leq t\}.$ | ||
| for associated spectral matrix cone | |||
| $K_{\text{mSum}} \triangleq \{ (t, X) \in \reals \times \mathbb S^n \: | \: \sum_{i=1}^k \boldsymbol{\lambda}_i(X) \leq t\}.$ | ad-hoc analysis. | |
| https://arxiv.org/abs/2511.01089v1 | |||
| PSD - Spectral Matrix Cone: | |||
| log-determinant cone | In spectral space | ||
| $K_{log}\equiv cl\left\{ | |||
| (t,s,\vec x)\in | |||
| \R \times \R_{++}\times\R_{++}^n : |
t/s\ge -\sum _i^n\blue{\log}(x_i/s) \right\}
=\left\{ (t,s,\vec x)\in \R \times \R_{++}\times\R_{++}^n :
t/s\ge -\sum i^n\log(x_i/s) \right\} \bigcup (\R+\times\{0\}\times\R_+^n)$ for assosiated matrix: $K_{log-det}\equiv cl\left\{ (t,s,\mathbf X)\in \R \times \R_{++}\times \green{ \mathbb S_{++}^n} :
t/s\ge -\blue{\log}\left(\blue{\det }\frac{\mathbf X}{s}\right) \right\}$ | systematic approach based on Newton’s method.https://arxiv.org/abs/2511.01089v1https://arxiv.org/abs/2511.01089v1 | | | PSD - Spectral Matrix Cone: trace-inverse cone | in spectral space $K_{inv}\equiv cl\left\{ (t,s,\vec x)\in \R\times \R_{++}\times\R_{++}^n: t/s\ge\frac {\sum i^n1/x_i}v=v\sum_i \blue{1/x_i} \right\}= \left\{ (t,s,\vec x)\in \R\times \R{++}\times\R_{++}^n: t/s\ge\frac {\sum i^n1/x_i}v=v\sum_i {1/x_i} \right\}\bigcup (\R+\times\{0\}\times\R_+^n)$ for associated spectral matrix cone $K_{log-det}\equiv cl\left\{ (t,s,\mathbf X)\in \R \times \R_{++}\times \green{ \mathbb S_{++}^n} :
t/s\ge s\blue{ \operatorname{Tr} \left( \mathbf X^{-1}
\left\{ (t, v, x) \in \reals \times \reals_{++} \times \reals^{n}{+} \: | \: \sum{i=1}^n x_i \log (x_i/v) \leq t\right\} \bigcup \: (\reals_+ \times \reals_+ \times \{0\}^n)$ for associated spectral matrix cone $K_{\text{mEnt}} \equiv cl \{ (t, v, X) \in \reals \times \reals_{++} \times \green{\mathbb S^{n}{++}} \: | \: \blue{\operatorname {Tr}(X \log (X/v))} \leq t \}$ | systematic approach based on Newton’s method. https://arxiv.org/abs/2511.01089v1 | | | PSD - Spectral Matrix Cone: root-determinant cone | in spectral space $K{\text{geomean}} \triangleq \{(t, x) \in \reals \times \reals^n_{+} \: | \: - \prod_{i=1}^n x_i^{1/n} \leq t\}.$ for associated spectral matrix cone $K_{\det} \triangleq \{(t, X) \in \reals \times \mathbb S^n_{+} \: | \: -( \det(X))^{1/n} \leq t \}.$ | systematic approach based on Newton’s method. https://arxiv.org/abs/2511.01089v1 | | | PSD - Spectral Matrix Cone: dual cone | | systematic approach based on Newton’s method. https://arxiv.org/abs/2511.01089v1 | |
closed conic hull of its epigraph (conic extensions)
凸函数的上图可以用锥闭包(凸包)表示,只需增加一个透视 perspective 维度$(x,t\ge f(x))$ → $(x,s,t),s>0$
$$ cl\{(t,s,x)\in \mathbb R^{1\times 1\times n}\mid \frac ts\ge f(\frac xs),s\ge 0\} $$
单纯的凸集不能满足cone $kv\in \Omega,\forall v\in \Omega$

注意,“透视源”不一定是点,可以是线、面,只要作为极限存在并以边界点囊括入闭包即可。
Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Amer. Math. Soc. 123(1), 46–63 (1966). https://doi.org/10.1090/S0002-9947-1966-0192318-X
如指数锥常表示为第三象限和透视锥的并集。
指数函数生成指数锥
$$ \mathcal K_{\exp}\equiv cl([\mathcal K_{\exp}]{++}) =[\mathcal K{\exp}]{++} \cup[\mathcal K{\exp}]_{0} $$
其中$[\mathcal K_{\exp}]_{++}$是指数函数符合透视的集合(perspective interior)
$$ [\mathcal K_{\exp}]_{++} =\big\{ (t,s,x)\in \mathbb R^{1\times 1\times n}\mid \frac ts\ge \exp(\frac xs),s\ge 0 \big\} $$
作为闭包,需要考虑并包括边界点。这里就是取$s\to 0$后只有极限定义的点集(指数函数被无穷缩小,取极限后上图为第四象限全体, perspective boundary)
$$ [\mathcal K_{\exp}]_{0} =\big\{ s=0,t\ge 0,r\le 0 \big\} $$
<aside>
Friberg - 2023 - Projection onto the exponential cone a univariate root-finding problem.pdf
指数锥优势
expressive abilities
指数函数上图,对数函数下图,exponentials指数多项式,logarithms,entropy funxtions熵,product logarithms, soft-max, soft-plus
numerically stable 3-self-concordant barrier functions
兼容对偶、facial reduction、内点特性
非symmetric cone,仍然能够快速收敛 </aside>
epigraphical reformulation