只考虑分子平动,不考虑分子内部结构运动。有
分子能量:
$$ \varepsilon=\frac{1}{2m}(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}) $$
分子微观状态数:
$$ D(\varepsilon)\mathrm{d}\varepsilon=g\frac{2\pi V}{h^{3}}(2m)^{3/2}\varepsilon^{1/2}\mathrm{d}\varepsilon $$
总分子数和系统内能可表示为
$$ N=g\frac{2\pi V}{h^{3}}(2m)^{3/2}\int_{0}^{\infty}\frac{\varepsilon^{1/2}\mathrm{d}\varepsilon}{\mathrm{e}^{\alpha+\beta\varepsilon}\pm1} $$
$$ U=g\frac{2\pi V}{h^{3}}(2m)^{3/2}\int_{0}^{\infty}\frac{\varepsilon^{3/2}\mathrm{d}\varepsilon}{\mathrm{e}^{\alpha+\beta\varepsilon}\pm1} $$
$$ \begin{aligned}N&=g\Big(\left.\frac{2\pi mkT}{h^2}\right)^{3/2}V\mathrm{e}^{-\alpha}\Big(\left.1\mp\frac{1}{2^{3/2}}\mathrm{e}^{-\alpha}\right)\\U&=\frac{3}{2}g\Big(\left.\frac{2\pi mkT}{h^2}\right)^{3/2}VkT\mathrm{e}^{-\alpha}\Big(\left.1\mp\frac{1}{2^{3/2}}\mathrm{e}^{-\alpha}\right)\end{aligned} $$
??零阶近似${e}^{-\alpha}=\frac{N}{V}\Big(\frac{h^{2}}{2\pi mkT}\Big)^{3/2}\frac{1}{g}$结果:
$$ \begin{aligned}U&=\frac{3}{2}NkT\Big[1\pm\frac{1}{4\sqrt{2}}\frac{1}{g}\frac{N}{V}\Big(\frac{h^{2}}{2\pi mkT}\Big)^{3/2}\Big]\\&=\frac{3}{2}NkT\Big(1\pm\frac{1}{4\sqrt{2}g}n\lambda^{3}\Big)\end{aligned} $$
内能第一项是玻尔兹曼分布的内能,第二项是全同性原理引起的量子统计关联导致的附加内能。(弱简并下附加内能较小)费米气体的附加内能为正,等效排斥;玻色气体的附加内能为负,等效吸引作用