<aside> 👐🏻

Conic Optimization / Conic Programming LP →CP

不等式约束替换为凸锥集(广义不等式)的 LP

$$ \begin{split}\begin{array}{ll} \operatorname{minimize} & c^Tx \\ \operatorname{subject\ to} & Ax=b,\\ & x\in K, \end{array}\end{split} $$

<aside>

  1. closed conic hull of its epigraph (conic extensions)

    凸函数的上图可以用锥闭包(凸包)表示,只需增加一个透视 perspective 维度$(x,t\ge f(x))$ → $(x,s,t),s>0$

    $$ cl\{(t,s,x)\in \mathbb R^{1\times 1\times n}\mid \frac ts\ge f(\frac xs),s\ge 0\} $$

    单纯的凸集不能满足cone $kv\in \Omega,\forall v\in \Omega$

    img_v3_02tf_54092300-4639-4bde-8850-824281cbe55g.jpg


    注意,“透视源”不一定是点,可以是线、面,只要作为极限存在并以边界点囊括入闭包即可。

    Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Amer. Math. Soc. 123(1), 46–63 (1966). https://doi.org/10.1090/S0002-9947-1966-0192318-X

    如指数锥常表示为第三象限和透视锥的并集。

  2. 指数函数生成指数锥

    $$ \mathcal K_{\exp}\equiv cl([\mathcal K_{\exp}]{++}) =[\mathcal K{\exp}]{++} \cup[\mathcal K{\exp}]_{0} $$

    其中$[\mathcal K_{\exp}]_{++}$是指数函数符合透视的集合(perspective interior)

    $$ [\mathcal K_{\exp}]_{++} =\big\{ (t,s,x)\in \mathbb R^{1\times 1\times n}\mid \frac ts\ge \exp(\frac xs),s\ge 0 \big\} $$

    作为闭包,需要考虑并包括边界点。这里就是取$s\to 0$后只有极限定义的点集(指数函数被无穷缩小,取极限后上图为第四象限全体, perspective boundary)

    $$ [\mathcal K_{\exp}]_{0} =\big\{ s=0,t\ge 0,r\le 0 \big\} $$

    <aside>

    Friberg - 2023 - Projection onto the exponential cone a univariate root-finding problem.pdf

    指数锥优势

    1. expressive abilities

      指数函数上图,对数函数下图,exponentials指数多项式,logarithms,entropy funxtions熵,product logarithms, soft-max, soft-plus

    2. numerically stable 3-self-concordant barrier functions

      兼容对偶、facial reduction、内点特性

    3. 非symmetric cone,仍然能够快速收敛 </aside>

    3. 指数锥的投影问题

Project onto P/D Exponential cone

Hien - 2015 - Differential properties of Euclidean projection onto power cone.pdf

Cederberg and Boyd - 2025 - Projections onto Spectral Matrix Cones.pdf

</aside>

Duality

Dual cone

$$ K^* = \{ y\in \real^n~:~ y^Tx\geq 0\ \forall x\in K\}. $$

如何直观理解凸优化理论中【对偶锥】的概念 https://www.zhihu.com/question/264853229/answer/286677771

如何直观理解凸优化理论中【对偶锥】的概念 https://www.zhihu.com/question/264853229/answer/286677771

Infeasibility certificates

<aside> 👐🏻

Farkas lemma  (see Sec. 2.3 (Infeasibility in linear optimization))

定义$A(K) = \{Ax~:~x\in K\}.$ 可行性↔ $b\in A(K)$ 不可行且$b\not\in\mathrm{cl}(A(K))$,存在过远点的超平面划分b和锥,对偶锥可以找到$y$

$$ b^Ty > 0, \quad (Ax)^Ty \leq 0\ \forall x\in K. $$

  1. 可行
  2. limit-feasible $\|Ax_n-b\|\to 0$ → ill-posed
  3. 不可行,但存在$y$满足刚才的不等式组 → infeasibility certificates </aside>

Lagrangian

$$ L(x, y, s) = c^Tx + y^T(b-Ax) - s^T x. $$

可行点$x^\in{\cal F}_p$ 对偶锥$(y^,s^)\in\real^m\times K^$

满足$x\in K$等价于$\exists s\in S^*,s^Tx\ge 0$

$$ L(x^, y^, s^)=c^Tx^+(y^)^T\cdot 0 - (s^)^Tx^\leq c^T x^. $$

对偶目标函数是拉格朗日函数的极小值

$$ \begin{split}g(y, s) = \min_x L(x,y,s) = \min_x x^T( c - A^T y - s ) + b^T y = \left \{ \begin{array}{ll} b^T y, & c - A^T y - s = 0,\\ -\infty, & \text{otherwise}. \end{array} \right.\end{split} $$