<aside> 👐🏻
Conic Optimization / Conic Programming LP →CP
不等式约束替换为凸锥集(广义不等式)的 LP
$$ \begin{split}\begin{array}{ll} \operatorname{minimize} & c^Tx \\ \operatorname{subject\ to} & Ax=b,\\ & x\in K, \end{array}\end{split} $$
<aside>
closed conic hull of its epigraph (conic extensions)
凸函数的上图可以用锥闭包(凸包)表示,只需增加一个透视 perspective 维度$(x,t\ge f(x))$ → $(x,s,t),s>0$
$$ cl\{(t,s,x)\in \mathbb R^{1\times 1\times n}\mid \frac ts\ge f(\frac xs),s\ge 0\} $$
单纯的凸集不能满足cone $kv\in \Omega,\forall v\in \Omega$

注意,“透视源”不一定是点,可以是线、面,只要作为极限存在并以边界点囊括入闭包即可。
Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Amer. Math. Soc. 123(1), 46–63 (1966). https://doi.org/10.1090/S0002-9947-1966-0192318-X
如指数锥常表示为第三象限和透视锥的并集。
指数函数生成指数锥
$$ \mathcal K_{\exp}\equiv cl([\mathcal K_{\exp}]{++}) =[\mathcal K{\exp}]{++} \cup[\mathcal K{\exp}]_{0} $$
其中$[\mathcal K_{\exp}]_{++}$是指数函数符合透视的集合(perspective interior)
$$ [\mathcal K_{\exp}]_{++} =\big\{ (t,s,x)\in \mathbb R^{1\times 1\times n}\mid \frac ts\ge \exp(\frac xs),s\ge 0 \big\} $$
作为闭包,需要考虑并包括边界点。这里就是取$s\to 0$后只有极限定义的点集(指数函数被无穷缩小,取极限后上图为第四象限全体, perspective boundary)
$$ [\mathcal K_{\exp}]_{0} =\big\{ s=0,t\ge 0,r\le 0 \big\} $$
<aside>
Friberg - 2023 - Projection onto the exponential cone a univariate root-finding problem.pdf
指数锥优势
expressive abilities
指数函数上图,对数函数下图,exponentials指数多项式,logarithms,entropy funxtions熵,product logarithms, soft-max, soft-plus
numerically stable 3-self-concordant barrier functions
兼容对偶、facial reduction、内点特性
非symmetric cone,仍然能够快速收敛 </aside>
Project onto P/D Exponential cone ←
Hien - 2015 - Differential properties of Euclidean projection onto power cone.pdf
Cederberg and Boyd - 2025 - Projections onto Spectral Matrix Cones.pdf
</aside>
feasible set 可行集
$$ {\cal F}_p=\{x\in \R^n \mid Ax=b\} \cap K $$
优化问题的值的下确界infimum
$$ p^\star = \inf\{c^Tx~:~ x\in{\cal F}_p\}, $$
$$ K^* = \{ y\in \real^n~:~ y^Tx\geq 0\ \forall x\in K\}. $$

如何直观理解凸优化理论中【对偶锥】的概念 https://www.zhihu.com/question/264853229/answer/286677771
self-dual
$(\real_+^n)^* = \real_+^n.$ $(Q^n)^=Q^n,(Q_r^n)^,(S_+^n)^*$
<aside> 👐🏻
Farkas lemma (see Sec. 2.3 (Infeasibility in linear optimization))
定义$A(K) = \{Ax~:~x\in K\}.$ 可行性↔ $b\in A(K)$ 不可行且$b\not\in\mathrm{cl}(A(K))$,存在过远点的超平面划分b和锥,对偶锥可以找到$y$
$$ b^Ty > 0, \quad (Ax)^Ty \leq 0\ \forall x\in K. $$
$$ L(x, y, s) = c^Tx + y^T(b-Ax) - s^T x. $$
可行点$x^\in{\cal F}_p$ 对偶锥$(y^,s^)\in\real^m\times K^$
满足$x\in K$等价于$\exists s\in S^*,s^Tx\ge 0$
$$ L(x^, y^, s^)=c^Tx^+(y^)^T\cdot 0 - (s^)^Tx^\leq c^T x^. $$
对偶目标函数是拉格朗日函数的极小值
$$ \begin{split}g(y, s) = \min_x L(x,y,s) = \min_x x^T( c - A^T y - s ) + b^T y = \left \{ \begin{array}{ll} b^T y, & c - A^T y - s = 0,\\ -\infty, & \text{otherwise}. \end{array} \right.\end{split} $$