In mechanics, a constant of motion is quantity that is conserved throughout the motion, imposing 构成 in effect a (mathematical )constraint on the motion.

example: energy, linear momentum, angular momentum, Laplace-Runge-Lenz vector.etc.

Constant of motion allow properties of the motion to be derived without solving the equations of motion.

Methods for identifying constants of motion

in quantum mechanics

An observable quantity $Q=Q(p,q,t)$ will be a constant of motion if it commutes with the Hamiltonian, and it does not iteself depend explicitly on time.

there is a wave function which obeys Schrödinger's equation

$$ \begin{aligned}i\hbar \frac{d\left | \psi  \right \rangle }{dt} & = H\left | \psi  \right \rangle \\-i\hbar \frac{d\left \langle \psi \right |  }{dt} & = \left \langle \psi \right | H\end{aligned} $$

so finally

$$ \begin{aligned}\frac d{dt}\langle\psi|Q|\psi\rangle &=\frac{d\left \langle Q\right \rangle}{dt }\\ &=\frac{d\left \langle \psi \right | }{dt} Q\left | \psi \right \rangle +\left \langle \psi \right | \frac{dQ}{dt} \left | \psi \right \rangle +\left \langle \psi \right | Q\frac{d\left | \psi \right \rangle }{dt} \\& = -\frac1{i\boldsymbol{\hbar}}\left\langle\psi\right|\left[H,Q\right]\left|\psi\right\rangle+\left\langle\psi\right|\frac{dQ}{dt}\left|\psi\right\rangle \end{aligned} $$

For an arbitary state of a quantum mechanical system