Free Classcial Field

Field Quantization

Statistial Properties of Classical Field

Detailed considerations based on the theory of atom-field interaction show that the optical detectors are square law detectors, i.e. they respond to the square of the field amplitude $I(\boldsymbol r,t)=E^2(\boldsymbol r,t)$[intensity]

$$ \begin{aligned}&G^{(n)}\Big(\{\boldsymbol{r}it_i\}n;\{\boldsymbol{r}{i+n}t{i+n}\}n\Big)=\prod{i=1}^nE^{(-)}\left(\boldsymbol{r}it_i\right)E^{(+)}\left(\boldsymbol{r}{n+i}t_{n+i}\right)\\&\equiv G^{(n)}\big(\boldsymbol{r}1t_1,\ldots,\boldsymbol{r}nt_n;\boldsymbol{r}{n+1}t{n+1},\ldots,\boldsymbol{r}{2n}t{2n}\big).\end{aligned} $$

$$ G^{(n)}\left(\{\boldsymbol{r}{i}t{i}\}{n};\{\boldsymbol{r}{i}t_{i}\}{n}\right)=\left\langle\prod{i=1}^{n}I\left(\boldsymbol{r}{i}t{i}\right)\right\rangle\geq0. $$

This function determines the correlation between intensities at different space-time points.

first-order correlation → Young’s double-slit

Second-order correlation → the Hanbury Brown and Twiss (HBTeffect


Gaussian approximation

Statistical Properties of Quantized Field

The observable statistical properties of the e.m. field in the quantum theory are determined by the correlation function


quantized coherent and Thermal Fields[quantum analogs of classcial stable and chaotic fields]

Homodyned Detection

A measurement of $\Delta n^2$ in homodyned detection of a single-mode field is a measure of the variance in $\hat A_\phi$

$$ \begin{equation}    \begin{aligned}\hat{A}_\phi=\frac{1}{\sqrt{2}}\left[\exp(\mathrm{i}\phi)\hat{a}+\exp(-\mathrm{i}\phi)\hat{a}^\dagger\right].\end{aligned}\end{equation} $$