$$ \begin{gathered}\mathbf{B}=\boldsymbol{\nabla}\times\mathbf{A}\\\mathbf{E}=-\boldsymbol{\nabla}\Phi-\frac{\partial\mathbf{A}}{\partial t}\end{gathered} $$

自动满足磁场无源,电场的旋度势磁场变化率的负值。

The equations of motion for a charge $q$ in an electromagnetic field can be obtained by using the Lagrangian:

$$ L=\frac12m\mathbf{v}\cdot\mathbf{v}-q(\Phi-\mathbf{A}\cdot\mathbf{v}) $$

$$ \begin{gathered}\mathbf{A}^{\prime}=\mathbf{A}+\nabla\Lambda(\mathbf{r},t)\\\\\Phi^{\prime}=\Phi-\frac{\partial\Lambda(\mathbf{r},t)}{\partial t}\end{gathered} $$

-恰好构成时间、位矢的偏微分

$$ L^{\prime}=L+q\left[\mathbf{\dot{r}}\cdot\nabla\Lambda(\mathbf{r},t)+\frac{\partial\Lambda(\mathbf{r},t)}{\partial t}\right]=L+q\frac d{dt}\Lambda(\mathbf{r},t) $$

$$ \begin{aligned}&\boldsymbol{E'} =-\boldsymbol{\nabla}\Phi^{\prime}-\frac{\partial\boldsymbol{A}^{\prime}}{\partial t}  \\&=-\boldsymbol{\nabla}\Phi-\frac{\partial\boldsymbol{A}}{\partial t} \\&=\boldsymbol{E} \\&\boldsymbol{B'} =\boldsymbol{\nabla}\times\boldsymbol{A}^{\prime}  \\&=\boldsymbol{\nabla}\times\boldsymbol{A} \\&=\boldsymbol{B}\end{aligned} $$

Coulomb gauge

A condition: $\nabla\cdot\varepsilon \hat{\mathrm A}=0$ → 电势$\phi=0$

矢势为无源场。

电场$\mathbf{E}=-\boldsymbol{\nabla}\Phi-\frac{\partial\mathbf{A}}{\partial t}$第一项为无旋场(纵场)对应库伦场;第二项为无源场(横场)对应感应电场。

$$ \begin{aligned}\nabla^{2}\mathbf{A}-\frac{1}{c^{2}}\frac{\partial^{2}\mathbf{A}}{\partial t^{2}}-\frac{1}{c^{2}}\frac{\partial}{\partial t}\nabla\varphi&=-\mu_{0}\boldsymbol{J} \\\nabla^{2}\varphi&=-\frac{\rho}{\varepsilon_{0}} \\(\nabla\cdot A&=0)\end{aligned} $$

标势满足的方程与静电场相同,解为库伦势,代入一式解出矢势,进而确定电磁场。

Lorenz gauge

$$ \nabla\cdot A+\frac1{c^2}\frac{\partial\varphi}{\partial t}=0 $$

解决实际辐射问题。