nonsingular 非奇异 matrix | invertible| nondegenerate| regular matrix
$$
AB=BA=I_n
$$
- There exists the (multiplicative) inverse of $A$:{matrix inversion} $B=A^{-1}$. $B$
is uniquely determined by $A$
Properties of nonsingular matrix
the invertible matrix theorem
Let $A\in K^{n\times n}$, the following statements are equivalent.
- $A$
is inverible. $AB=I=BA$
- The matrix has inverse under matrix multiplication.$AC=I$
- $AB=I$
- The linear transformation mapping $f:x\to Ax$ is invertible
- The linear transformation mapping $f:x\to Ax$ has inverse under function composition.$f\circ g=1=g\circ f$
- $A$ is row-equivalent to the n-by-n identity matrix $I_n$ {they have the same row sapce}
- $rank (A)=n$, full rank
- trivial kernel ,$\ker(A)=\{0\}$
- The linear transformation mapping $x \to Ax$
- surjective 满射
- injective 单射
- bijective 双射
- column →linearly independent
- span (row)=K^{n}
- row , basis→ K^{n}
- $det A \ne 0$
- $A-\lambda I=singular,(A-\lambda I)x=x$, and $\lambda \ne 0$
- the transpose $A^T$ is an invertible matrix
Relation to its adjugate
$$
\mathbf{A}^{-1}=\frac1{\det(\mathbf{A})}\operatorname{adj}(\mathbf{A}).
$$