(Jacobi’s) Generalized Mometum
$$ \frac{\partial L}{\partial\dot{q}_j}\equiv p_j $$
(Jacobi’s) Generalized Energy | Jacobi’s energy integral → Hamitonian function
$$ h(\mathbf{q},\mathbf{\dot{q}};t)\equiv\sum_j\left(\dot{q}_j\frac{\partial L}{\partial\dot{q}_j}\right)-L(\mathbf{q},\mathbf{\dot{q}},t) $$
⇒generalized energy theorem
$$ \frac{dH\left(\mathbf{q},\mathbf{p},t\right)}{dt}=\frac{dh(\mathbf{q},\mathbf{\dot{q}},t)}{dt}=\sum_j\dot{q}j\left[Q_j^{EXC}+\sum{k=1}^m\lambda_k\frac{\partial g_k}{\partial q_j}(\mathbf{q},t)\right]-\frac{\partial L(\mathbf{q},\mathbf{\dot{q}},t)}{\partial t} $$
由generalized energy theorem, 非保守力为零的情况下,哈密顿是否显性依赖时间等同于拉格朗日量。
If the following two requirements are satisfied
Then
$$ H=T+U=E $$