generalized quantity


symmetries & Invariance

Untitled

Hamiltonian Invariance 哈密顿不变性

由generalized energy theorem, 非保守力为零的情况下,哈密顿是否显性依赖时间等同于拉格朗日量。

If the following two requirements are satisfied

  1. the kinetic energy has a homogeneous 单一 quadratic 平方 dependence on the generalized velocities, that is, the transformation to generalized coordinates is independent of time, $\frac{\partial x_{\alpha,i}}{\partial t}=0.$
  2. the potential energy is not velovity dependent, thus the terms $\frac{\partial U}{\partial\dot{q}_i}=0.$

Then

$$ H=T+U=E $$