the Leibniz integral rule for differentiation under the integtal sign states that for an integral of the form $\int_{a(x)}^{b(x)}f(x,t)dt,$ where $-\infty<a(x),b(x)<\infty$ and the integrands are functions dependent on $x$.
$$ \begin{aligned} &\frac{d}{dx}\left(\int_{a(x)}^{b(x)}f(x,t)dt\right) \\ &=f\left(x,b(x)\right)\cdot\frac d{dx}b(x)-f\left(x,a(x)\right)\cdot\frac d{dx}a(x)+\int_{a(x)}^{b(x)}\frac\partial{\partial x}f(x,t)dt \end{aligned} $$
where the partial derivative $\frac{\partial}{\partial x}$ indicates that inside the integral, onlt the variation of $f(x,t)$ with $x$ is considered in taking the derivative{Gottfried Leibniz} .
The following three basic theorems on the interchange of limits are essentially equivalent:
A Leibniz integral rule for a two dimensional surface moving in three dimensional space is
$$ \frac{d}{dt}\iint_{\Sigma(t)}\mathbf{F}(\mathbf{r},t)\cdot d\mathbf{A}=\iint_{\Sigma(t)}\left(\mathbf{F}t(\mathbf{r},t)+\left[\nabla\cdot\mathbf{F}(\mathbf{r},t)\right]\mathbf{v}\right)\cdot d\mathbf{A}-\oint{\partial\Sigma(t)}\left[\mathbf{v}\times\mathbf{F}(\mathbf{r},t)\right]\cdot d\mathbf{s}, $$
where: