$$ \boldsymbol A=\sum_k a_k\boldsymbol {A_k}+a_k^\dagger\boldsymbol {A_k^*} $$
$$ \boldsymbol {A_k}=\boldsymbol {u_k}(\boldsymbol r)\cdot \exp(-i\omega_k t) $$
常见的模函数可以将(周期)时间项分离,$\boldsymbol {u_k}(\boldsymbol r)$可以对应平面波$\exp(i\boldsymbol k\cdot\boldsymbol r)$,高斯波的形式,进而有平面波模,高斯波模$\boldsymbol {A_k}$。
$$ \int_V \boldsymbol {u_k^*}(\boldsymbol r)\boldsymbol {u_{k^\prime}}(\boldsymbol r)d \boldsymbol r=\delta_{kk^\prime} $$
Spectrum Decomposition, but how?
$$ \hat{\mathbf{A}}(\mathbf{r},t)=\sum_{k}\left(\mathbf{A}{k}(\mathbf{r},t)\hat{a}{k}+\mathbf{A}{k}^{*}(\mathbf{r},t)\hat{a}{k}^{\dagger}\right). $$