q.h.o 量子谐振子:

Quasiprobability distributions

In classcial optics: a phase space distribution $W(q,p)$ quantifies the probability of finding a particular pair of $q,p$ values in their simultaneous measurement.[W→all statistical quantities]

In quantum mechanics:

but classcial-like fashion of making statistical predictions

Just one postulate turns out to be sufficient: W behaves like a joint probability distribution for $q,p$+postulate that the position probability distribution after an arbitrary phase shift $\theta$ should equal the projection $\begin{aligned}\operatorname{pr}(q,\theta)& \equiv\langle q|\hat{U}(\theta)\hat{\rho}\hat{U}^{\dagger}(\theta)|q\rangle   \\&=\int_{\infty}^{+\infty}W(q\cos\theta-p\sin\theta,q\sin\theta+p\cos\theta)\mathrm{d}p.\end{aligned}$

Untitled

Wigner’s representation of quantum mechanics

Other quasiprobability distributions

Simple optical instruments& some experiments