q.h.o 量子谐振子:
-
波动方程的解(谐振子的类比),满足量子力学条件(薛定谔方程+?)
-
坐标表示,Fock states表示
-
电动力学到量子场论,二次量子化的电磁场部分
- 两个假设:量子场的系综平均是经典场;哈密顿量是光(电磁场)的能量
- A - 通过两个假设和算符替代证明量子场(矢势算符、电场算符、磁场算符)满足薛定谔方程、boundary conditions and the fundamental commutation relation+?这些量子力学条件
- B - 直接将矢势分解波模(平面波模、高斯波模等,依据在傅里叶变换,form a complete set and obey the laws of electromagetism),$A_k$ are complex function of space and time coordinates, but not operator; are classcial;$A_k^*$ are part of the complete set of classcial waves since Maxwell’s equations are real. The coefficients $\hat a$ and its Hermitian (quantum vector potential is Hermitian) are operators carrying the quantum properties of light.
-
选择符合q.h.o.的波模:
Bose commutation relations $\begin{bmatrix}\hat{a}k,\hat{a}{k'}^\dagger\end{bmatrix}=\delta_{kk'},\quad\begin{bmatrix}\hat{a}k,\hat{a}{k'}\end{bmatrix}=0.$
-
Monochromatic 单色modes.分解波模允许波包(modes that contain a range of optical frequency and hence a range of colors)单色模有结论$\hat{H}=\sum_k\hbar\omega_k\Big(\hat{a}_k^\dagger\hat{a}_k+\frac{1}{2}\Big).$
-
分解成无穷个波模,总能量为无穷大。the zero point enerfy $E_{0}=\sum_{k}\frac{\hbar\omega_{k}}{2}=\infty$ results in perfectly finite and experimentally confirmed facts.(is constant, with finite energy density, for reason as yet unkown Appendix A)
-
electromagnetic oscillator
- quadrature states
- Fock state
- thermal state
- coherent state describing coherent laser light
all states are introduced as eigenstate
- MUS minimum uncertainty states
Quasiprobability distributions
In classcial optics: a phase space distribution $W(q,p)$ quantifies the probability of finding a particular pair of $q,p$ values in their simultaneous measurement.[W→all statistical quantities]
In quantum mechanics:
- Heisenberg’s uncertainty principle
but classcial-like fashion of making statistical predictions
Just one postulate turns out to be sufficient: W behaves like a joint probability distribution for $q,p$+postulate that the position probability distribution after an arbitrary phase shift $\theta$ should equal the projection $\begin{aligned}\operatorname{pr}(q,\theta)& \equiv\langle q|\hat{U}(\theta)\hat{\rho}\hat{U}^{\dagger}(\theta)|q\rangle \\&=\int_{\infty}^{+\infty}W(q\cos\theta-p\sin\theta,q\sin\theta+p\cos\theta)\mathrm{d}p.\end{aligned}$

Wigner’s representation of quantum mechanics
- whenever quantum corrections to classcial laws were of interest
- Basic properties
- overlap formula $\mathrm{tr}\{\hat{F}1\hat{F}2\}=2\pi\int{-\infty}^{+\infty}\int{-\infty}^{+\infty}W_1(q,p)W_2(q,p)\mathrm{d}q\mathrm{d}p$
- calculating expectation values
- reveals both the similarities and differences between a classcial probability distribution and the Wigner function$\left|\langle\psi_1|\psi_2\rangle\right|^2=2\pi\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}W_1(q,p)W_2(q,p)\mathrm{d}q\mathrm{d}p$
- quantify the purity of a quantum state$\mathrm{tr}\{\hat{\rho}^{2}\}=2\pi\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}W(q,p)^{2}\mathrm{d}q\mathrm{d}p.$
- entropy ~W
- represent the density matrix elements in a given basis in terms of W $\langle a'|\hat{\rho}|a\rangle=\mathrm{tr}\{\hat{\rho}|a\rangle\langle a'|\}=2\pi\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}W(q,p)W_{a'a}(q,p)\mathrm{d}q\mathrm{d}p.$
- the value of W may range between only $\pm\pi^{-1}$,$\left|W(q,p)\right|\leq\frac{1}{\pi}.$
Other quasiprobability distributions
- Q function
- P function
- s-parameterized quasiprobability distributions$W(q,p;s)\equiv\frac{1}{(2\pi)^2}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\widetilde{W}(u,v;s)\exp(\mathrm{i}uq+\mathrm{i}vp)\mathrm{d}u\mathrm{d}v.$
Simple optical instruments& some experiments