<aside> 👐🏻
Conic Optimization / Conic Programming LP →CP
不等式约束替换为凸锥集(广义不等式)的 LP
$$ \begin{split}\begin{array}{ll} {minimize} & c^Tx \\ {subject to} & Ax=b,\\ & x\in K, \end{array}\end{split} $$
feasible set 可行集
$$ {\cal F}_p=\{x\in \R^n \mid Ax=b\} \cap K $$
优化问题的值的下确界infimum
$$ p^\star = \inf\{c^Tx~:~ x\in{\cal F}_p\}, $$
$$ K^* = \{ y\in \real^n~:~ y^Tx\geq 0\ \forall x\in K\}. $$
如何直观理解凸优化理论中【对偶锥】的概念 https://www.zhihu.com/question/264853229/answer/286677771
self-dual
$(\real_+^n)^* = \real_+^n.$ $(Q^n)^=Q^n,(Q_r^n)^,(S_+^n)^*$
<aside> 👐🏻
Farkas lemma (see Sec. 2.3 (Infeasibility in linear optimization))
定义$A(K) = \{Ax~:~x\in K\}.$ 可行性↔ $b\in A(K)$ 不可行且$b\not\in\mathrm{cl}(A(K))$,存在过远点的超平面划分b和锥,对偶锥可以找到$y$
$$ b^Ty > 0, \quad (Ax)^Ty \leq 0\ \forall x\in K. $$
$$ L(x, y, s) = c^Tx + y^T(b-Ax) - s^T x. $$
可行点$x^\in{\cal F}_p$ 对偶锥$(y^,s^)\in\real^m\times K^$
满足$x\in K$等价于$\exists s\in S^*,s^Tx\ge 0$
$$ L(x^, y^, s^)=c^Tx^+(y^)^T\cdot 0 - (s^)^Tx^\leq c^T x^. $$
对偶目标函数是拉格朗日函数的极小值
$$ \begin{split}g(y, s) = \min_x L(x,y,s) = \min_x x^T( c - A^T y - s ) + b^T y = \left \{ \begin{array}{ll} b^T y, & c - A^T y - s = 0,\\ -\infty, & \text{otherwise}. \end{array} \right.\end{split} $$
整理之后,原始问题变化为