wsl:
Windows环境下利用WSL搭建GPU训练/推理PaddlePaddle神经网络环境
建议使用CUDA in WSL,避免cuda配置覆盖。
NVIDIA CUDA Toolkit 12.1 Downloads
Installation Instructions:
wget <https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin>
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget <https://developer.download.nvidia.com/compute/cuda/12.4.1/local_installers/cuda-repo-wsl-ubuntu-12-4-local_12.4.1-1_amd64.deb>
sudo dpkg -i cuda-repo-wsl-ubuntu-12-4-local_12.4.1-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-4-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-4
WSL中CUDA驱动本质是Windows平台的驱动,继承了Windows平台的缺陷。WSL对应驱动并未完全开发。
可以使用conda虚拟环境中配置的python
sgemm_
BLAS_LIBRARIES【conda】blas
->LAPACK【conda】blas
clang-format【conda】
pkg-config【conda】
libblas-dev liblapack-dev
libeigen3-dev【apt】Eigen3
libzstd-dev【apt】libzstd>=1.4
conda create --name lammps-py310 python=3.10 blas clang-format pkg-config
sudo apt install libblas-dev liblapack-dev libeigen3-dev libzstd-dev