The wave-like, classcial properties of a light mode are in the mode function; all we need to know for deducing the quantum physics of the mode is the Bose commutation relation for the mode operators
Bose commutation relations $\begin{bmatrix}\hat{a}k,\hat{a}{k'}^\dagger\end{bmatrix}=\delta_{kk'},\quad\begin{bmatrix}\hat{a}k,\hat{a}{k'}\end{bmatrix}=0.$
For single mode, it is just $\begin{bmatrix}\hat{a},\hat{a}^\dagger\end{bmatrix}=1$
? single mode 是否假设单色波模?单色模有哈密顿量正比光子数,其他波模的哈密顿量是什么形式【未计算】 single mode 根据分解方法确定模式,傅里叶变化算符对应频率(单色);
The key operators of the single mode:
photon number operator $\hat n=\hat a ^\dagger\hat a.$
phase shifting operator $\hat U(\theta)\equiv\exp(-i\theta \hat n)$,$\hat{U}^\dagger(\theta)\hat{a}\hat{U}(\theta)=\hat{a}\exp(-\mathrm{i}\theta).$.
when the observer wish to change the phase of the mode, then (in Schrodinger picture)$\hat{\mathbf{A}}_k(\mathbf{r},t)=\mathbf{A}_k(\mathbf{r},t)\exp(-\mathrm{i}\theta)\hat{a}$ ↔$\hat{\rho}(\theta)=\hat{U}\hat{\rho}\hat{U}^\dagger.$
quadratures $\hat{q}=\frac{1}{\sqrt{2}}\left(\hat{a}^\dagger+\hat{a}\right)$,$\hat{p}=\frac{\mathrm{i}}{\sqrt{2}}\left(\hat{a}^\dagger-\hat{a}\right)$; $\hat{x}_{\lambda}=\frac{1}{\sqrt{2}}[\hat{a}\exp(-\mathrm{i}\lambda)+\hat{a}^{\dagger}\exp(\mathrm{i}\lambda)]$.
For monochromatic modes $\hat q,\hat p$ correspond to the in-phase & out-of-phase component of the field amplitude[$\exp(-i\omega_k t)$and $\pi/2$ phase later][$\hat x_\lambda,\hat x_{\lambda+\pi/2}$]
$\hat a=\frac 1 {\sqrt 2}(\hat q + i\hat p)$