<aside>
Fine’s theorem
Fine - 1982 - Hidden Variables, Joint Probability, and the Bell Inequalities.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.48.291
the set of local correlations forms a convex polytope
$$ \int_\Lambda d\lambda \rho (\lambda)\cdot P(A^{+1},\lambda)P(A^{-1},\lambda)P(B^{+1},\lambda)P(B^{-1},\lambda)=P(A^{+1}A^{-1}B^{+1}B^{-1})\\=\int_\Lambda d\lambda \rho (\lambda)\cdot \lambda^\prime $$
deterministic hidden variable model
</aside>
<aside>
polynomial optimization
Tchebyshev system
https://en.wikipedia.org/wiki/Chebyshev_polynomials#:~:text=[edit]-,Recurrence definition,-[edit]
$$ T_0(x)=1,T_1(x)=x \text{ or } 2x\\T_{n+1}(x)=2xT_n(x)-T_{n-1}(x),\ \forall n\geq 1 $$
至少$n-1$个分离零点distinct zeros
commuting polynomials
$$ \begin{cases} \deg F_n(x)=n,\\ F_n\left(F_m(x)\right)=F_m\left(F_n(x)\right) \end{cases} $$
$\deg$ 是多项式的最高次项次数,$F_n(x)$的系数在一个特征为0(Characteristic 重复加至零的最小次数,$p\cdot a=\sum_{i=1}^pa=0\forall a\in \mathbb F$)的域上
$$ F_n(x)=\begin{cases} x^n\\\text{or}\\ 2T_n(\frac{x}{2}) \end{cases} $$
moment cone 矩量锥
$$ \mathcal S_A=\left\{\int a_id\mu < \infty\right\} $$
measurable functions $A=\{a_i\}^m$on a measurable space $(\mathcal X,\mathcal U)$
$\mu$ is a positive measure on $(\mathcal X,\mathcal U)$
https://arxiv.org/abs/1809.00584
Dio和Schmüdgen - 2018 - The multidimensional truncated Moment Problem The Moment Cone.pdf
relative interior 相对内部
点的邻域完全包含在锥中。
$$ \text{rint }K =\left\{\right\} $$
chordal decomposition
对称矩阵(PSD矩阵)视为邻接矩阵,一个最大完全子图称 clique,具有
</aside>