NumPy quickstart — NumPy v2.1 Manual
向上取整np.ceil()
最大值np.max()
复制而非引用new_array = old_array.copy()
序列访问
extrema_index_list
= scipy.signal.argrelextrema(np.array( S_list ) ,
np.less ,
order = 1 )[ 0 ] # 取索引而非之后的布尔
fre_extrema_index = np.array(frequencies_list)[ extrema_index_list]
# 使用no.array()[]进行列表序列访问,而非将列表直接置于中括号操作符中。
数组最小值的位置
序列范围判定:
使用numpy.logical_and(#list_judge)
对每个元素进行范围判定,判定条件为list_judge
传入的每个条件都成立(AND)
使用numpy.all()
Test whether all array elements along a given axis evaluate to True.
Xcenter , Ycenter , W , L = solution
lower_bound = [ -(W - 1) / 2 , -(L - 1) / 2 , self.W_min , self.L_min ]
upper_bound = [ (W - 1) / 2 , (L - 1) / 2 , self.Wg , self.Lg ]
within_bounds = np.logical_and(solution > lower_bound ,
solution < upper_bound )
if np.all(
within_bounds
) is False:
print( "超过限制\\n" )
return -300
数组求和np.sum()
切片表达式
Dc[1:NT] = (MSD[1:NT] - MSD[0:NT-1])/ (6 * h)
MSD[it] = np.sum(Dx * Dx + Dy * Dy)