<aside>
🎎 Generalized and formalization theory of volumes, and the probability of events.
Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Constantin Carathéodory, and Maurice Fréchet
</aside>
measure space
测度空间 $(X,\mathcal A,\mu)$ consists of a measurable space $(X,\mathcal A)$ together with a measure on it.
- An underlying set 一个集合$X$
→样本空间
- $\sigma$-algebra over $X$ 集合$X$的子集构成的集合$\mathcal A$, or $\Sigma$ → 事件
- method for measuring (the measure) 计算测度的方法$\mu(\cdot)$ → 事件的概率$\mu(X)=1$
- non-negativity: $\mu(e)\ge 0, \forall e\in\Sigma$
- $\mu(\emptyset) =0$
- $\sigma$-additivity: $\mu (\bigcup _{k=1}^{\infty }E_k)=\sum {k=1}^{\infty }\mu (E_k)$: For all countable collections$\{E_k\}{k=1}^\infty$of pairwise disjoint sets两两不相交 in $\Sigma$
complex measure
Lebesgue measure
Lebesgue Integral
Measures that take values in Banach spaces.