群groups、环rings、域fields、向量空间vector spaces、模modules (over a ring)、域上的代数algebra over a field、格lattices(偏序集partially ordered set)⇒ 代数结构
<aside> 🧸
algebraic structures: sets with specific operations acting on their elements.
</aside>
代数结构(as objects)及其同态homomorphisms (as arrows) ⇒ 数学范畴 mathematical category
<aside> 🧸
$$ f(\mu_A(x,\cdots,y))=\mu_B(f(x),\cdots, f(y))\\ f:A\to B $$
a map $f:A\to B$ preserves an operation $\mu$ of arity $k$, defined on both $A$ and $B$
映射保留操作$\mu$,此映射为同态(映射)。
$\operatorname{Hom}(A,B)$表示所有同态构成的集合
</aside>
同构isomorphism
双射同态。(一一对应,满射)
‣
同胚
可以看作拓扑学上的同构
自同构 automorphism
$\operatorname{Aut} G$ 群的自同构全体,与(函数)复合运算构成群$G$的自同构群
automorphism group symmetry group of the object
<aside> 🧸
category a collection of “objects” that are linked by “arrows“
to study properties and constructions that are similar for various structure
</aside>
原群:封闭性
<aside> <img src="notion://custom_emoji/9040cc52-5c24-4c85-8328-7061a24dd7f9/16ad969b-881f-80a5-9628-007a21e1e2d4" alt="notion://custom_emoji/9040cc52-5c24-4c85-8328-7061a24dd7f9/16ad969b-881f-80a5-9628-007a21e1e2d4" width="40px" />
a non-empty set $G$ together with a binary operation on $G$.封闭性$a\cdot b\in G$
【Group axioms】
<aside> <img src="notion://custom_emoji/9040cc52-5c24-4c85-8328-7061a24dd7f9/16ad969b-881f-8072-8df7-007acb52450c" alt="notion://custom_emoji/9040cc52-5c24-4c85-8328-7061a24dd7f9/16ad969b-881f-8072-8df7-007acb52450c" width="40px" />
a set $R$ with 2 binary operations, addition $(x,y)\mapsto x+y$, and multiplication $(x,y)\mapsto xy$,
含幺环(乘法恒元,单位半群)⇒可逆环(乘法逆元,群)⇒域(乘法交换律,阿贝尔群) 交换环(乘法交换律) 【数域】
</aside>