气体在低密度下忽略分子间相互作用。高密度考虑。

单原子分子经典气体

$$ H=\sum_{i=1}^{3N}\frac{p_i^2}{2m}+\sum_{i<j}\phi(r_{ij}) $$

$\sum_{i<j}$否则重复计算相互作用势能$i,j\to i\ne j\to i<j:\phi(r_{ij})=\phi(r_{ji}).$

$$ \begin{aligned}\mathcal Z&=\frac{1}{N!h^{Nr}}\int e^{-\beta H(q,p)}d\Omega\\&=\frac{1}{N!h^{3N}}\int e^{-\beta H}dq_1dq_2\cdots dq_{3N}dp_1dp_2\cdots dp_{3N}\\&=\frac1{N!h^{3N}}\int e^{-\beta\sum_{i=1}^{3N}p_i^2/2m}dp_1dp_2\cdots dp_{3N}\int e^{-\beta\sum_{i<j}\phi(r_{ij})}dq_1dq_2\cdots dq_{3N}\\&=\frac1{N!}{\left(\frac{2\pi mkT}{h^2}\right)^{3N/2}}Q\end{aligned} $$

指数内为二次,取积分上下限为无穷【可根据实际情况选取体积】。第七章,采用高斯积分公式【考试给出】。

$$ Q=V^N{\left[1+\frac{N^2}{2V}\int f(r)4\pi r^2dr\right]} $$

$$ \mathcal Z=\frac1{N!}{\left(\frac{2\pi mkT}{h^2}\right)^{3N/2}}Q $$

$$ \begin{aligned}P=&\frac{1}{\beta}\frac{\partial\ln Z}{\partial V}=\frac{1}{\beta}\frac{\partial\ln Q}{\partial V}=\frac{1}{\beta}\bigg[\frac{N}{V}-\frac{N^2}{2V^2}\bigg[f(r)4\pi r^2dr\bigg]\\=&\frac{NkT}{V}\Bigg[1-\frac{N}{2V}\Bigg[f(r)4\pi r^2dr\Bigg]=\frac{NkT}{V}\Bigg[1+\frac{n}{V}B\Bigg]\end{aligned} $$

第二维里Virial系数

$$ \begin{aligned}B=-\frac{N_A}{2}\int f(r)4\pi r^2dr=-\frac{N_A}{2}\int[e^{-\beta\phi(r)}-1]4\pi r^2dr\end{aligned} $$

Untitled

Lennard-Jones(LJ)势

推测:

$$ f(r)=\frac{C_1}{r^{k_1}}-\frac{C_2}{r^{k_2}} $$

保守力:

$$ \phi(r)=\frac{A_1}{r^m}-\frac{A_2}{r^n} $$

空气中的常见粒子:

$m=12,n=6,$

$$ \phi(r)=\varepsilon{\left[\left(\frac{r_e}r\right)^{12}-2{\left(\frac{r_e}r\right)^6}\right]} $$