<aside> <img src="/icons/redo_purple.svg" alt="/icons/redo_purple.svg" width="40px" />

高等光学 | nabla算符

</aside>

<aside>

$$ \begin{aligned}&\oint_{L}\boldsymbol{E}\cdot\mathrm{d}\boldsymbol{l}=-\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{t}}\int_{s}\boldsymbol{B}\cdot\mathrm{d}\boldsymbol{S} \\&\oint_{L}\boldsymbol{H}\cdot\mathrm{d}\boldsymbol{l}=I_f+\frac{\mathrm{d}}{\mathrm{d}t}\underset{\mathrm{s}}{\operatorname*{\int}}\boldsymbol{D}\cdot\mathrm{d}\boldsymbol{S} \\&\oint_{s}\boldsymbol{D}\cdot\mathrm{d}\boldsymbol{S}=Q_{t} \\&\oint_s\boldsymbol{B}\cdot\mathrm{d}\boldsymbol{S}=0\end{aligned} $$

$$ \begin{aligned} \oint_{\partial \Sigma}\bm E\cdot d\bm l&=-\iint_\Sigma \frac{\partial \bm B}{\partial t}\cdot d\bm \sigma\\

\oint_{\partial \Sigma}\bm H\cdot d\bm l&=\iint_\Sigma \left(\bm J+\frac{\partial \bm D}{\partial t}\right)\cdot d\bm \sigma\\

\oiint_\Sigma \bm D\cdot d\bm \sigma&=\iiint_\Omega \rho dV\\

\oiint_\Sigma \bm B\cdot d\bm \sigma &= 0 \end{aligned} $$

</aside>

maxwell equations 中的偏导数(电磁效应导致,固定面元的积分的求导)

Untitled

transverse wave 横波

there is an infinite number of sunch to and fro directin, all lying in a plane normal to the direction of propagation, in which the vibrations may occur.

longitudinal wave 纵波

there is only one to and fro direction 一个来回震荡的方向 in which the vibrations 震荡 can occur for a given direction of propagation 传播

666

Gauge invariance in electromagnetism规范不变性

电磁场的一些例子

电磁波的传播

平面谐振波 PHM Plane Harmonic Motion

能量,能流

真空中

$$ \begin{aligned}

\boldsymbol H=\frac1{\mu_0}\boldsymbol B,\quad \boldsymbol D=\varepsilon_0\boldsymbol E

\end{aligned} $$

玻印亭矢量 $\bm S$;

能流密度 $w$ 可以视作逐点电场能和磁场能的和,但更一般的定义是变分法(?)

$$ \begin{aligned}

\boldsymbol{S}&= \frac1{{\mu}_0}\boldsymbol{E}\times\boldsymbol{B} \\

\boldsymbol{w}&= \frac12\left({\varepsilon}_0\boldsymbol E^2 +\frac1{\mu_0}\boldsymbol B^2\right)

\end{aligned} $$

$$ \delta \omega=\boldsymbol E\cdot\delta \boldsymbol D+\boldsymbol H\cdot\delta \boldsymbol B $$

线性介质